Jack T. Holladay, M.D., M.S.E.E., F.A.C.S.

ADVANCED IOL POWER CALCULATIONS

Jack T. Holladay, MD, MSEE, FACS

I. Formulas and Measurements
A. Variables Used to Predict ACD

1. Binkhorst 2-1981-AL
2. Holladay 1-1988-AL, K
3. SRK/T-1990-AL, K
4. Hoffer Q - 1993 - AL, K
5. Olsen - 1995-AL, K, ACD
6. Clarke- 1996-AL, K1, K2 ACD, LT
7. Holladay 2-1996 - AL, K, HWTW, REF, ACD, LT, AGE
B. Normal Values for required Measurements
8. Axial Length: mean $=23.5 \mathrm{~mm}, \mathrm{SD}=1.25 \mathrm{~mm}$
9. Keratometry: mean $=43.81 \mathrm{D}, \mathrm{SD}=1.6 \mathrm{D}$
10. Horizontal White-to-White (Corneal diameter): mean $=11.7 \mathrm{~mm}, \mathrm{SD}=0.46 \mathrm{~mm}$
11. Preoperative Refraction: mean = plano
12. Anterior Chamber Depth (ultrasonic): mean $=3.1 \mathrm{~mm}, \mathrm{SD}=0.30 \mathrm{~mm}$
13. Crystalline Lens Thickness (ultrasonic): mean $=4.7 \mathrm{~mm}, \mathrm{SD}=0.41 \mathrm{~mm}$
14. Age: mean $=72, \mathrm{SD}=12$ years
II. Axial length Measurements in Aphakic and Pseudophakic eyes
A. Aphakia - 1532 M/sec
B. Pseudophakia
15. PMMA - $2718 \mathrm{M} / \mathrm{sec}$
16. Silicone - $980 \mathrm{M} / \mathrm{sec}$
17. Acrylic- $2120 \mathrm{M} / \mathrm{sec}$
III. Determination of corneal power following Keratorefrative Sx (PRK, LASIK, RK)
A. Manual Keratometry
B. Automated Keratometry
C. Corneal Topography
D. Calculation from pre- keratorefractive surgery K's
E. Determination from hard contact lens trial
IV. Data Screening Techniques on Preoperative Measurements
A. Probability of unusual measurements (one eye only)
B. Probability of asymmetrical measurements (both eyes)
V. IOL Calculations requiring Axial Length Measurements
A. Standard Cataract Removal with IOL
18. Piggy-Back IOL's: Use 34 D IOL posterior in bag
19. Multifocal IOL's: Target distance plano, near for -3.00 D.
20. Toric IOL's: IOL Cylinder to Corneal Cylinder ~ 1.46, but not exact for low (1.75) and high (1.20) power IOLs
a. Optimization of Cataract Incision Location: Normal 4 locations for zero residual astigmatism
b. Back calculation for surprise: 1) P.O. Refraction \&, 2) P.O. Ks OR Current IOL axis
B. Cataract Removal with IOL and Silicone in Vitreous: use convexplano ~ 3 D more, for biconvex ~ from 5-6 D more in IOL.

Jack T. Holladay, M.D., M.S.E.E., F.A.C.S.

VI. IOL Calculations not requiring Axial Length
A. Secondary Implant for Aphakia: in sulcus or anterior chamber angle
B. AC IOL in phakic patient: High myopia (- IOL) \& High hyperopia (+ IOL)
C. Secondary Piggy-Back IOL for high hyperopia (or myopia within 1 year)
VII. Pediatric IOL calculations
A. Ideal Postoperative Target Refraction: plano to -1.00 D .
B. Expected Myopic Shift with age: 4 D from age 2 to age 21.
VIII. Minimizing Prediction Error
A. Personalizing Formula Constants (A-const, ACD or Surgeon Factor)
B. Prediction Error vs. IOL Power
C. Creating personalized constants for subgroups

1. Axial Length ($<22 \mathrm{~mm}$ or $>26 \mathrm{~mm}$)
2. Keratometry (<40 D or > 48 D)
3. Preoperative Refraction (<-4 D or $>+4 \mathrm{D}$)
IX. Calculating SIRC (Surgically induced refractive change)
A. From pre and post operative keratometry
B. From pre and post operative refraction
X. Outcomes Analysis
A. Prediction Error Analysis: Mean absolute prediction error should be < 0.50 D.
B. Formula Comparisons: more predictors, better results in unusual eyes
C. SIRC Results: Astigmatic Analysis
D. Visual Acuity Results
4. Best corrected
5. Uncorrected
XI. Back-calculations
A. For determining source of error with refractive surprise
B. Comparison of back-calculated lens constant and actual lens constant

Vergence Formula

- Theoretical Formula has not changed in 173 years
- Physiologic Assumptions may be slightly different
- Retinal thickness
- Corneal Index of Refraction

3/28̇20014•JTH 22

Vergence Formula

$$
\begin{aligned}
& I O L=\frac{1336}{A L-E L P} \div \frac{1336}{1336} \\
& \ddots \\
& \ddots
\end{aligned}
$$

ELP
 Effective Lens Position

- Distance from corneal vertex to principal plane of thin IOL (no thickness)
- Same às ACD, but àvoids confusion with anatomy

Investigation

- International Study - 1993
- 34 investigators (15 Ü.S:)
- Additional measurements àre taken.
- 35 eyes < 21 mm
- 35 -éyes > 26 mm .
- 35 eyes = normal

3/28/2014 • JTH 28

Normal Eÿes

3/28i/2014 JTH 37

3/28/2014 • JTH 34
ASICO \# AE 1576

3/28/2014 JTH 39

Normal Physiologic Values

- Al: $23.5 \mathrm{~mm} \quad \pm 1.25 \mathrm{~mm}$
- K: 43.81D $\quad+1.6 \mathrm{D}$
- Hwtw 11.7 mm $\pm 0.46 \mathrm{~mm}$
- Ref: -0.6̣0 D. $\quad=2.00 \mathrm{D}$

Normal Physiologic Values

- ACD: $3.1 \mathrm{~mm} \quad \pm 0.30 \mathrm{~mm}$
- LT: $4.7 \mathrm{~mm} \quad \pm 0.41 \mathrm{~mm}$
- Age: 72 years +12.0 years

CONCLUSION

Eye Model must include

NINE

types of eyes not only

THREE

3/28/2014 - JTH 43

CONCLUSION: 9 EYES

$\frac{\stackrel{1}{N}}{\frac{N}{\circlearrowleft}}$	Meğalocornea + axial. hyperopia - (0\%)	Megalocornea (2\%)	Largé Eye Buphthalmos Megalocornea + axial myopia (10%)
© Normal	axial hyperopia (80\%)	$\begin{aligned} & \text { normal } \\ & (96 \%) \end{aligned}$	axial myopia (90\%)
Small	Small eye Nanophthalmia (20%).	Microcornea $\because(2 \%) .$	Microcornea. + axial opia : - (0\%)
$\frac{\pi}{4}$	Short	Normal ial Len	Long

x: Relative Importance of Predictors for ELP

o Axial Length .. 100
(2) Average.K $\quad 76$

3 Horizontal WTW . 24
© Refractión $\because \quad 18$
© ACD . $\quad 8$
6 LT $\because \quad \because \quad \therefore \quad \cdots$
0 Age : $\quad 1$

FORMULA PERFORMANCE

3/28/2014-JTH 49

来:
 THE HOLLADAY 2 FORMULA

More Measurements

More Accuracy

CONCLUSIONS

- Prediction Errors in Short Eyes: signiificantly improved by more measurements.
- Prediction Errors in Long Eyes: due to bad Axial Lengths; B-Scan

Fig. 8-1. Myopic conus.

3/28/2014 \cdot JTH 53

2. Calculation from. Prior Data (Post Std. K's \& \triangle MR only)	
Post Mean K	40.58 D
Change in SEQ Ref	$-4.50 \mathrm{D}$
STD K's: -0.24 * SEQ =	-1.08
Calc.Mean K	39.50 D

\# Accuracy of EKR

Prior	STD 4.5
Sx	(D)
LASIK	0.56
RK	0.94

Holladay JT, Hill WE, Steinmueller A. Corneal Power
Measurements Using Scheimpfl ug Imaging in Eyes With Prior Corneal Refractive Surgery. J Refractive Surgery 2009:25:862868. (October 2009 Issue of J Refr Surgery)

3/28/2014 JTH 106

* Keratoconus Calculation \#2

Dear Dr. Holladay,
> Will you please review this case and give me some insight. A KKC with Intacs patient undewent ECCE/IOL the doc targeted -4.00 so as to not make him anisometropic. I used the Pentacam 3.0 mm zone EKR and the Holladay II formula. The patient came out PI -0.75x 135= 20/30! UCVA $=20 / 40$. Patient is very very happy. But, this was an unintended outcome. How does one measure the central corneal power in an Intacs pt?. Can you determine the cause of this outcome?. It appears that the cornea must be flatter than what the instruments measured? Is that a correct assumption. The suggested IOL power was 26.0D. for a target 0f -4.00. When I click the keratoconous box (after the fact) for the same target the suggested IOL power was 27.50.?????? What should I have done differently!
> Please Advise! THANK YOU 1000x
> Yvonne
3/2820014 JTH 125

Keratoconus Case \#3

Dear Dr. Holladay,
I am so pleased and excited to tell you about a very successful outcome involving IOL calcs on KCN patient and the assistance Holladay
distribution scale on the Pentacam. I thought you might find this distribution scale on the Pentacam. I thought you might find this
case interesting and gratifying at the least.
Pre Op Refraction: $+5.75-8.00 \times 075=20 / 40 \quad$ IOLM ks $47 / 54.17 \times 91$
1 wk Post-Op Refraction: $-0.50-3.25 \times 65=20 / 50$ The surgeon placed a temporal suture. Will this 1 suture significantly impact the astigmatism?
I ran IOL calcs based on instructions you gave me on a similar case ,previously. You instructed me to use the Ks from a paracentral region derived from the EKR Distribution scale on Holladay report. I used the Ks from the smaller peak which I approximated to be about 44D. With those Ks and Holladay consultant we obtained the above results. I think this case demonstrates the invaluable utility of
the Holldaday report when calculating IOL power in pts with KCN. the Holldaday report when calculating IOL power in pts with KCN.
I attached the screenshots of Pentacam and IOL calcs. The technician who perfromed the IOL Master was unable to get ACD with IOLM and failed to get ACD with Immersion ultrasound- thats the reason that field is blank.
Yvonne
3/28/20\% JTH 129

Keratoconus Calculation

- $K_{\text {mean }}=48.8 \mathrm{D}$
-Used 44 D => SEQ = -2.12 D
(-0.50-3.25X65 = 20/50)
- 65\% mean = 46.2 D => +0.08 D
- Always \checkmark KKC
- Use 65\% mean K

3/28/2014 JTH 132

"OL Calcs Using Axial Length

- Cataract or Clear Lens Removal
- Primary Piggy-Back IOL's
- Multifọçal IOL’s
- Toric IOL's.
- Silicone in Vitreous Compartment

Axial Length Measurements

- Phakia
- Aphakia
- Pseudophakia
- PMMA
- Silicane

Acrylic
3/28/2014 JTH 134

Primary Piggy-Back IOL's'

- Current Formulas are very inaccurate
-.ELP underestimated due to AL .
- Back lens displaced posteriorly
- Severe hyperopic errors (+5 D)

3/28/2014 JTH 135

Polypseudophakia

$$
\text { Up to } 4 \text { IOL's }
$$

3/28/2014 JTH 138

Primary Piggy-Back
Complications
Acrylic

Interlenticular membrane
3 to 5 D hyperopic shift @ 3 yr
Silicone
Interlenticular membrane
\because

Flat Spot

3/28/2014-JTH 148

Toric IOL's

- Current Formulas do not work because calculate different ELP for steep and flat meridian
- Predicted ELP must be the same for each meridiàn -only one IOL position

Minimizing Prediction Error

- Holladay 2. Formula
- Persónalize Constant
- Prediction Error vs. IOL power
- Constants for Sub-groups

Axial Length, K's and Refraction
Toric IOL's

- Calculate IOL power for
steep and flat meridian
using same ELP
- Difference in IOL powers is
the toricity necessary to
completely correct corneal
astigmatism
Toric IOL's
- Always choose toricity to
\therefore undercorrect corneal
astigmatism - WRONG!
- LEAVE MINRESIDUAL CYL!
- Eg: Steep calc yields $24.0 . \mathrm{D}$
Flat calc yields 27.0 D
- Ideal Toricity is $3.0 . \mathrm{D}$
(Use 24.0 D with <3.0 D of toricity)

Ratio and Power of IOL Cylinder to Corneal Cylinder

	TABLE1					
	Effective Lens Position (ELP)					
A-constant \rightarrow	116.346	117.203	118.059	$\underline{118.916}$	119.773	120.630
Surgeon Factor \rightarrow	0.287	0.772	1.257	1.742	2.227	2.713
ELP->	4.000	4.500	5.000	5.500	6.000	6.500
IOL POWER	Resulting Ratio of IOL Toricity to 2D of Corneal Astigmatism					
10	1.359	1.424	1.494	1.571	1.654	1.745
22	1.277	1.330	1.387	1.450	1.519	1.595
34	1.198	1.239	1.284	1.334	1.390	1.452
46	1.121	1.151	1.185	1.223	1.267	1.316
TABLE 2						
Effective Lens Position (ELP)						
A-constant(D) \rightarrow	$\rightarrow 116.346$	117.203	118.059	118.916	119.773	120.630
Surgeon Factor(mm) \rightarrow	$\rightarrow 0.287$	0.772	1.257	1.742	2.227	2.713
ELP(mm) \rightarrow	$\rightarrow 4.000$	4.500	5.000	5.500	6.000	6.500
IOL POWER	Required IOL Toricity for 2 D of Corneal Astigmatism					
10	10.718	2.848	2.988	3.141	3.308	3.490
22	2.554	2.659	2.774	2.900	3.038	3.190
	2.396	2.477	2.568	2.668	2.780	2.904
	$46 \quad 2.242$	2.302	2.369	2.446	2.533	2.631

Dioptric Error vs. Angular Error for a 1.00 D of astigmatism

Angle Error (${ }^{\circ}$)	Dioptric Error (D)	\% Error
0°	0.00	0\%
15°	0.52	52\%
30°	1.00	100\%
45°	1.41	141\%
60°	1.73	173\%
75°	1.93	193\%
90°	2.00	200\%
Dioptric Error = 2 * Cyl * \sin (angular error)		

3/2820014 J JTH 173

> Silicone in Vitreous Cavity
> - Use Convexo-Plano:IOL to minimize effect of Silicone. (add 3 D to calculäted IOL)
> - If Biconvex IOL (add 6 D to calculated IOL)
> - When Siliconé removed -- 2 to 5 D of induced myopia

IOL Calculation without AL

- Secondary AC or PC IOL for Aphakia
- Secondary.Piggy-Back AC or PC IOL for Pseudophakia
- Primary AC IOL in Phakía

Secondary Piggy-Back IOL's Indications

Intolerable Pseudophakic Refractive Error

IOL Calculations using a
Refractive Formula
(ignore axial length)

Refractive Surprises

o Previous RK, PRK, LASIK
o Bad axial length - short/long
в Mislabeled IOL
๑ Axially displaced
©. Mịsc.

6 Secondary Piggy-Back Calc Advantages over Exchange

- Mislabeled IOL irrelevant
© Less risk to capsule or zonules
3 Mismeasured AL irrelevant
© No AP shift of existing IOL
- Fewer unknown variables

3/28/2014 JTH 185

Phakic IOL. Calculation. Input Variables

- Refraction and Vertex
- Keratomètry
- Desired Refraction
- Predict ELP (ACD) Effećtive Lens Pósition

Phakic IOL Calculation Input Variables

Refraction and Vertex

 Soft Contact Lens @ Vtx $=0$ w Small:Over-Refraction (< ± 2 D) is most accurate.
REFRACTION FORMULA

$I O L=\frac{1336}{\frac{1336}{1000}-E L P}-\frac{1336}{\frac{1336}{P^{1000}}+V}+\frac{1000}{\frac{1000}{D P C}-V}+K$.
. Holladay, J.T.: "Refractive Power Calculations för Intraocular Lenses in the Phakic Eye." American Journal of Ophthalmology. Volume 116:63-66, July 1993.

3/28ं/2014 - JTH 207

Effective Lens Position (ELP) OLD ACD

- Verisye Avg ELP = 4.27 mm
- $\operatorname{AACD}(20 \mathrm{y} / \mathrm{o})=3.60 \mathrm{~mm}$

$$
A A C D+0.67 \mathrm{~mm}=E L P x
$$

3/28/2014 •JTH 209

Phakic IOL Calculations

- + IOL's to Specs ~ 1.5 to 1
- - IOL's to Specs ~ 1.0 to 1
- Approximation only

悉 Pediatric IOL Calculations

- Ideal Refraction: plano to -1 D
- Expect average of 4 D. myópic shift from age 2 to 20
- Much easier to correct myopia at age 20 than amblyopia

Surgically Induced Refractive Change SIRC

- From Keratometry
- Cataract.\& Clear Lensectomy

Keratorefractive Sx .

- From Refraction
- Keratorefractive Sx.

3/28/2014-JTH 225

Back-Calculations

- Helpful in determining cause of refractive surprise
Back-calcülated K, AL and JOL power compared to pre-op \& to post-op remeasured values
- Back-calculated ELP compared to preoperative prédićtion by formula

Minimizing Prediction Error

- Holladay 2. Formula
- Persónalize Constant
- Prediction Error vs. IOL power
- Constants for Sub-groups.

Axial Length, K's and Refraction

