Toric IOL Selection and Positioning Guided by Intraoperative Aberrometry

Kathryn M. Hatch, M.D.
Assistant Clinical Professor of Ophthalmology, Warren Alpert Medical School of Brown University
Talamo Hatch Laser Eye Consultants
Waltham, MA
April 29, 2014

Financial Disclosures

• Abbott Medical Optics Inc. –L
• Allergan, Inc. -C, L
• IOP Ophthalmics – C,L

Intraoperative Aberrometry

• “Real-time” aphakic readings
• Assist with IOL choice
 – Power calculation
 – Toric calculation
• Astigmatism management with Toric IOLs alignment and LRIs

Toric IOL

• Intraocular lens designed to decrease postoperative astigmatism
• Multiple manufacturers
 – Alcon
 – Abbott Medical Optics
 – Staar
 – Bausch & Lomb
Intraoperative Aberrometry

• Value?

• To our knowledge, there is no peer-reviewed literature evaluating the use of aberrometry with Toric IOLs

Methods

• Non-randomized retrospective comparative trial

• Private practice setting

• 2 surgeons

Baseline Characteristics of Intraoperative Aberrometry vs Toric Calculator Groups

• Aberrometry group (n= 37 eyes)
 – Cylinder power and axis of placement determined by ORA aphakic refraction
 • Placement refined by pseudophakic refraction

• Toric calculator (“traditional method”) group (n=27 eyes)
 – Cylinder power and axis of placement determined by standard biometry and toric calculator

• Primary Outcome Measurement
 – Post-op refractive cylinder

Methods

• Aberrometry group: 37 cases
 • Mean pre-op keratometric astigmatism:
 - 1.83 D ± 0.79 D
 - Range 0.74 D to 3.77 D
 • Mean postop timeframe:
 - 58 days (2 months)
 - Range: 15 to 132 days
 • Lenses implanted
 - SN6AT3: 18
 - SN6AT4: 4
 - SN6AT5: 5
 - SN6AT6: 2
 - SN6AT7: 1
 - SN6AT8: 2
 - ZCT150: 3
 - ZCT225: 1
 - ZCT300: 1

• Non-ORA group: 27 cases
 • Mean pre-op keratometric astigmatism:
 - 1.59 D ± 0.69 D
 - Range 0.69 D to 4.10 D
 • Mean postop timeframe:
 - 60 days (2 months)
 - Range: 29 to 119 days
 • Lenses implanted
 - SN6AT3: 18
 - SN6AT4: 2
 - SN6AT5: 6
 - SN6AT7: 1
Preoperative Keratometric Astigmatism Versus Aphakic Aberrometry Measurement (n=37)

Altered Decision Making in OR; Aberrometry Group

- Toric IOL power
 - Changed 24% of the time (9/37)

- Spherical IOL power
 - Changed 35% of the time (13/37)

Preoperative Keratometric Astigmatism Toric Calculator Group (n=27)

Number of Rotations Made After 1st Toric Lens Positioning Pseudophakic Measurement

No rotations were necessary in 2/3rd of aberrometry cases
No Rotations Necessary in 2/3 cases

- No rotations; 68%
 - This number may also be aided by intraop info provided to surgeon via reticle and apheric refraction/vector analysis
- ≤ 3 rotations; 92%
- > 3 rotations; 8%

Post-Operative Residual Refractive Astigmatism (RRA)

<table>
<thead>
<tr>
<th>Percentage (Patients)</th>
<th>≤ 0.25 D RRA</th>
<th>≤ 0.50 D RRA</th>
<th>≤ 0.75 D RRA</th>
<th>≤ 1.00 D RRA</th>
</tr>
</thead>
</table>
| % patients
Aberrometry group
n=37
mean: 0.46 D ± 0.42 | 38% | 78% | 86% | 95% |
| % patients
Non-Aberrometry
group
n=27
mean: 0.68 D ± 0.34 | % | % | % | % |
| Results of Alcon
FDA Trial
n=244
mean: 0.55 D ± 0.50 D | -- | 62% | -- | 88% |

Non Aberrometry Group

Pre-op and Post-op Astigmatism

- 57% reduction in cylinder

Chance of a patient being in a lower postoperative residual refractive range increases when intraoperative aberrometry is used

p-value: .0130

Postoperative Residual Refractive Astigmatism

<table>
<thead>
<tr>
<th>Mean</th>
<th>Standard Deviation</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non ORA</td>
<td>0.68 D +/- 0.34 D</td>
<td>.0153 statistically significant</td>
</tr>
<tr>
<td>ORA</td>
<td>0.46 D +/- 0.42 D</td>
<td></td>
</tr>
</tbody>
</table>

Mean 0.55 D ± 0.50 D

57% reduction in cylinder
Aberrometry Group

Pre-op and Post-op Astigmatism

- Preop Keratometric Cylinder
- Postoperative Refractive Cylinder
- 75% reduction in cylinder (p-value: .0027)

UCDVA Results

Eyes targeted for distance only, no ocular disease

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non ORA logmar equivalent</td>
<td>0.16</td>
<td>+/- 0.14</td>
<td>-0.12</td>
<td>0.40</td>
</tr>
<tr>
<td>ORA logmar equivalent</td>
<td>0.11</td>
<td>+/- 0.17</td>
<td>-0.12</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Review of an Aberrometry Case in which ORA was not followed

- Female, 61 years old
 - IOLMaster k’s: 2.48 @ 177
 - Autorefraction k’s: 1.50 @ 87
 - Other device k’s: 1.12 @ 171
 - Target refraction: plano
- Preop plan to implant 13.5 D SN6AT3
Review of an Aberrometry Case in which ORA was not followed

ORA showed T3 with > 1 D residual astigmatism during 1st apheric measurement

Limitations

- Cost
- OR time
- Learning Curve
- IOP
- Bubbles
- Lid speculum

Patient’s manifest refraction at 15 days postop was -2.00 +2.00 x 174
Conclusions

• You don’t always “get it right the first time”...
 – Toric power changed in 25%
 – > 1 rotational adjustment in 1/3

• Intraop aberrometry reduces absolute post-operative RRA and improves UCVA

• Aberrometry (in our hands) 2.5 x more likely to achieve ≤0.50 D residual refractive astigmatism