Management of Astigmatism in Cataract Surgery

Jonathan B. Rubenstein, MD
Vice-Chairman and
Deutsch Family Professor of Ophthalmology
Director of Cornea and Refractive Surgery
Rush University Medical Center

Financial Disclosure

- Alcon
 - Consultant
- Bausch and Lomb
 - Consultant

Introduction

The goal of modern cataract surgery is to achieve emmetropia or balance with the fellow eye.

1. Control the spherical component
 - IOL Master or LensStar
 - Water bath ultrasound
 - Keratometry or topography

2. Manage the astigmatic component
 - Size and location of the cataract wound
 - Peripheral Corneal Relaying Incisions (PCRI)
 - Toric IOLs
 - Postoperative management
 - Astigmatic Keratotomy; Wound Revision or Excimer laser
Introduction

- Goal is to achieve ≤ 0.50 D of post-op cylinder to minimize the need for post-operative spectacles

What is the best way to manage astigmatism?

- PCRI
- Toric IOLs

Peripheral Corneal Relaxing Incisions (PCRI)

- Incisions made ~ 90% depth, in front of the limbus, in the steep meridian of the cornea
- Incisions in the peripheral clear cornea
 - Heals faster
 - Refractive effect stabilizes quickly
 - Less irregular astigmatism, glare, and foreign body sensation
Pre-operative Assessment of Astigmatism
Magnitude and Axis

- Manual Keratometry
- IOL master or LENSTAR
- Corneal Topography
- Elevation mapping

Pre-op Assessment of Astigmatism

- Best test for axis
 - IOL master – quantitative
 - Topography – qualitative
- Best test for power
 - Manual Keratometry
 - IOL master

Intra-operative - Alignment

- Alignment is critical!

Traditional Method
- Mark the 6 o’clock or 3, 6, and 9 o’clock positions on the patient’s limbus with the patient sitting up looking straight ahead with both eyes open.
Intra-operative - Alignment

- In the OR, mark the steep corneal axis, using a marked fixation ring, astigmatic ruler or arcuate marker with the 90º mark aligned with the 6 o'clock mark on the cornea.

Many different types of astigmatic markers are available.

Mark in mm or in degrees depending upon which nomogram used.
III. Peripheral Corneal Relaxing Incisions -

Technique

- Measure the thinnest limbal corneal thickness and set the diamond knife or use a preset diamond knife set to 600 microns.
- Make incisions before cataract surgery using a single footplate front cutting diamond blade.

Nomograms

- Can correct 1.00 – 3.00D of astigmatism.
- Base technique on one of many established nomograms:
 - a. Gills/Fenzel
 - b. Nichamin
 - c. Koch

[LRIcalculator.com from AMO]
III. Peripheral Corneal Relaxing Incisions - Example

Example:
- A 75yo pt. With 2.5 D @ 180º:
 - Use paired 45º cuts (Koch) at the limbus at the 3 o'clock position or paired 50º cuts (Nichamin) at 180º.

Peripheral Corneal Relaxing Incisions - Technique -

- Make incisions at the beginning of the case
- While the corneal epithelium is still pristine
- While the eye is still closed and IOP is controlled
III. Peripheral Corneal Relaxing Incisions

- After PCRI is made, make your usual temporal cataract incision
- If the PCRI is against-the-rule:
 - Limit the PCRI to 3 mm length and make cataract incision within the PCRI
- If the PCRI is with-the-rule:
 - Make paracentesis peripherally and PCRI more centrally
 - Calculate the IOL in the same way as normal - no change in spherical equivalent is produced
Femto-second LRIs

Femto LRI Video

Complications

- Under correction
- Over correction - including flipped axis
- Perforation – examine peripheral cornea pre-op to look for peripheral thinning
- Wound leak
 - Relaxing incision made coincident with extrastar wound at 180°
 - Secondary to tear of the PCRI
- Interference with paracentesis
 - PCRI made at 90 degrees
Peripheral Corneal Relaxing Incisions
Special Indications

- High corneal astigmatism
 - > 5.00 D
 - Combine PCRI with Toric IOLs

- Low corneal astigmatism
 - 0.75 – 1.25 D

- Irregular corneal astigmatism
 - Non-orthogonal axis
 - When exact axis is question
 - Inability to implant a planned Toric IOL secondary to capsular break or annular instability, still can correct cylinder with a PCRI

Toric Lenses

STAAR

Alcon

Rayner Toric IOLs

C-flex IOL (570C)
Superflex® IOL (620H)
Sulfacryl® Toric (655T)
II. Staar Toric IOL

A. A plate-haptic style foldable silicone IOL

B. A biconvex 6mm optic IOL with a spherocylinder anterior surface and a spherical posterior surface

C. The interhaptic diameter is 10.8 mm with a 1.15 mm round hole

D. Powers of 2.0 D and 3.5 D that can correct from 1.5 - 3.5 D of preoperative astigmatism

II. Staar Toric IOL

Complications:
- Decentration of IOL - ?? increased in plate IOL’s?
- Lens rotation or shift
 - Lose 3.3% of cylinder with each degree off axis
 - May need manipulation of IOL, at slit lamp or in the OR
- Increased posterior capsule opacification??
- Increased pitting of silicone with YAG??
- Bad IOL for Pt’s at risk for vitrectomy
TECNIS Toric Aspheric IOL

- On line toric calculator
- www.tecnistoriccalc.com
Trulign Toric Accommodating Intraocular Lens

Based upon the Crystalens AO platform

• Astigmatic powers
 - 1.25, 2.00, 2.75 D
 - 0.83, 1.33, 1.83 D at the corneal plane

• Spherical power
 - 17.0 – 25.0 D

Trulign online IOL calculator

AcrySof® TORIC IOL

Design
- AcrySof Single-Piece platform
- Aspheric
- Posterior toricity
- Spherical Power +6 to +30 D
- Astigmatic power 1 – 5 D

Dimensions
- Overall length: 13.0 mm
- Optic diameter: 6.0 mm
- A-Constant = 119.0 for SN6AT

Delivery
- Monarch III Injector
- B, C or D Cartridge

Steep K alignment marks
Cylinder Powers

A wide range of cylinder powers means more candidates can benefit from AcrySof® IQ Toric IOL.

ALCON® LENS MODELS

<table>
<thead>
<tr>
<th>SN6AT3</th>
<th>SN6AT4</th>
<th>SN6AT5</th>
<th>SN6AT6</th>
<th>SN6AT7</th>
<th>SN6AT8</th>
<th>SN6AT9</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOL Plane</td>
<td>3.50 D</td>
<td>2.00 D</td>
<td>1.50 D</td>
<td>1.00 D</td>
<td>0.50 D</td>
<td>0.00 D</td>
</tr>
<tr>
<td>Corneal Plane</td>
<td>1.50 D</td>
<td>2.00 D</td>
<td>2.50 D</td>
<td>3.00 D</td>
<td>3.50 D</td>
<td>4.00 D</td>
</tr>
</tbody>
</table>

Recommended Corneal Astigmatism Correction Range

<table>
<thead>
<tr>
<th>Range</th>
<th>Cylinder Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75 D to 1.54 D</td>
<td>1.55 D to 2.05 D</td>
</tr>
</tbody>
</table>

*Based on average pseudophakic human eye.

Rotational Stability – Important!

IOL rotation can have significant impact on astigmatism correction.

- Generally, for every 1° of IOL rotation, 3.3% of lens cylinder power is lost.
- A complete loss of cylinder power can occur with a rotation of >30°.
Toric IOL Procedural Considerations

- Surgeon performs standard cataract procedure from capsulorhexis through phacoemulsification
- Toric IOL implantation requires only minor variation from standard procedure:
 1. IOL calculation
 2. Marking of the eye
 3. IOL alignment (on-axis)

1. IOL Calculation

Step I:
- Determine required spherical power using preferred method

Step II:
- Utilize AcrySof Toric IOL Calculator to determine:
 - The correct Toric model
 - Optimal axis location of the IOL
 - www.acrysoftoriccalculator.com

AcrySof® IOL Calculator
Home Page
AcrySof Toric IOL Calculator

Precision Calculations:
- Uses vector analysis to determine correct axis
- Compensates for surgically induced astigmatism

Data Input:
- Preoperative manual keratometry
- Eye power
- Incision location
- Estimated surgically induced astigmatism

2. Marking of the Eye

I. Reference Marks (pre-op)
- Single mark at 6:00 limbus
- Patient in sitting position (avoid cyclotorsion)

II. Axis Marks (intra-op)
- Axis marks identify the optimal axis of IOL placement
- Axis marks are placed on the eye using 6 o’clock pre-op reference mark for alignment steep axis
3. IOL Alignment

3 Step Procedure:
I. Gross alignment
II. Removal of OVD
III. Final alignment

I. Gross Alignment
- Rotate IOL clockwise to approximately 5 - 10 degrees short of desired position or on axis if can be kept stable
- Complete while the IOL is unfolding in the capsular bag
IOL Alignment

II. Stabilize IOL During OVD Removal
- Take care to prevent IOL from rotating past intended axis during OVD removal
 - 2nd instrument
 - I/A tip - polyester
 - Bi-manual I/A
- Thoroughly remove all the OVD from behind IOL

III. Final Alignment
- Carefully rotate IOL clockwise precisely onto the intended axis of alignment with infusion running
- Tap IOL down into capsular bag to seat lens in place
Patient Selection

- 1 to 5 diopters of cylinder
- Intact capsule
- Continuous curvilinear capsulotomy (CCC)
- In the bag lens placement

Alcon Toric
Alcon Toric

New Technology
Refining the Astigmatism axis location
- TrueVision 3D system
- Clarity-Holos
- Verion

New Technology
Intra-operative aberometry
WaveTec
ORA
LASIK has produced high expectations:
- 92.6% of LASIK patients with vision of 20/40 or better*
- 95.4% of patients satisfied with their outcome after LASIK surgery**
- ~93% of LASIK patients within ±0.5 D

Cataract surgery outcomes are not meeting this post-op standard of ±0.5 D

Outcomes Not Meeting Expectations...

Sources of Post-op Error

*Estimated Best
LASIK Outcomes
Possible Fix
The VERION
Image Guided System

Designed to add greater astigmatic accuracy during surgical planning and execution.

VERION™ Reference Unit
VERION™ Digital Marker

VERION Reference Unit

Image:
- Captures a high-resolution reference image of the patient’s eye
- Auto-detects scleral vessels, limbus, pupil, and iris features
- Measures keratometry, pupillometry

Plan:
Enables surgeons to determine an optimized surgical plan:
- Multiple IOL formula calculations, yielding lens power selection
- Incision and implantation axis planning
Comprehensive Astigmatism Planner

Image and Plan Video

VERION Digital Marker

Guide
- Displays patient information and images from the VERION Reference Unit
- A tracking overlay enables surgeons to see all incisions and alignment in real time
- Tracking accounts for cyclorotation
- Eliminates the need for manual eye markings
- Assists in accurate centering and alignment of multifocal and toric IOLs
The VERION Digital Marker can be used with the LenSx Laser as well as most surgical microscopes.

With LenSx Laser:

With OR Microscope:

LenSx Laser Dock

VERION Digital Marker
Registration at the Scope (after LenSx Laser)
New Developments
Intra-operative aberometry

WaveTec
ORA

The ORA System

Provides on demand information which assists in intraoperative decision making

Utilizes Talbot Moiré interferometry

Enables real-time surgical course correction

Attaches directly to existing surgical microscopes

ORA System Components

AnalyzOR™ Web Based Data System
Allows for entry of pre and post-op information into the database from any computer via the web, thereby post-op results facilitate optimizing ORA IOL power calculations

Aberrometer
ORA provides both Aphakic & Pseudophakic refraction for:

- IOL power calculation
- Axis of astigmatism
- Magnitude of astigmatism

Surgical Cart
The monitor displays:

- 3 camera view of the eye during the measurement process
- On-demand refractive information
VerifEye is the new monitoring hardware upgrade that provides continuous refractive information.

- Streaming refractive information
- Verifies that the eye is stable and ready for measurement
- IOL power recommendations
- Astigmatic guidance
- Shorter measurement time
 - Faster processor
 - 2 seconds for measurement
 - 3 seconds for processing

Requirements for Successful Measurement

- Widely Opened Eye
- Well Hydrated Eye
- Well Pressurized Eye
- Well Aligned Eye
In Summary

- Need to know how and when to use both Toric IOLs and PCRs.
- PCRs - remain a necessary part of your surgical armamentarium.