Co-existing glaucoma and cataract

Options:
- Combined or sequential surgery?
- Phacoemulsification or trabeculectomy alone?
- Cataract surgery first or cataract surgery first?

Scope

- What are the options?
- How is it done?
- What to look out for and how to get out of trouble?

Coexisting Cataract and Glaucoma

What are the options?

Options for Glaucoma Surgery

"Traditional" Filtering surgery
- Trabeculectomy
- Enhanced filtering surgery
- Drainage devices

Phacoemulsification

Phacoemulsification alone leads to reduction of IOP
- Angle closure glaucoma
- More postoperative complications
- More intraocular inflammation

Phacoemulsification >6 months average trabeculectomy

- More postoperative complications
- More intraocular inflammation
- More hypotony

Phacoemulsification alone

Phacoemulsification after trabeculectomy

Leads to induced trabeculectomy failure
- Especially effective 3 months after trabeculectomy
- Risk of IOP elevation in 3-6 months
- Increase in IOP of 2-5 mmHg in first 12 months after Phacoemulsification
- Change in topography
- More adverse events

Phacoemulsification vs Trabeculectomy

Phacoemulsification vs Consecutive Trabeculectomy-Phacoemulsification

- Phacoemulsification +6 months after trabeculectomy
- Similar success rate.

Phacoemulsification vs Consecutive Trabeculectomy-Phacoemulsification

- Phacoemulsification +6 months after trabeculectomy
- Better success rate.

Phacoemulsification Alone

- More postoperative complications
- More intraocular inflammation
- More hypotony

Phacoemulsification vs Trabeculectomy

- Phacoemulsification +6 months after trabeculectomy
- Better success rate.

Phacoemulsification vs Consecutive Trabeculectomy-Phacoemulsification

- Phacoemulsification +6 months after trabeculectomy
- Better success rate.

Cons

- More complications in phaco trabeculectomy
- Higher the pre-op IOP, greater the IOP lowering
- ~1.5 mmHg

Combined or sequential surgery?

Opinions

• "Traditional" Filtering surgery
• Enhanced filtering surgery
• Drainage devices

Opinions for Glaucoma Surgery

"Traditional" Filtering surgery
- Trabeculectomy
- Enhanced filtering surgery
- Drainage devices

Phacoemulsification

Phacoemulsification alone leads to reduction of IOP
- Angle closure glaucoma
- More postoperative complications
- More intraocular inflammation

Phacoemulsification >6 months average trabeculectomy

- More postoperative complications
- More intraocular inflammation
- More hypotony

Phacoemulsification alone

Phacoemulsification after trabeculectomy

Leads to induced trabeculectomy failure
- Especially effective 3 months after trabeculectomy
- Risk of IOP elevation in 3-6 months
- Increase in IOP of 2-5 mmHg in first 12 months after Phacoemulsification
- Change in topography
- More adverse events

Phacoemulsification vs Trabeculectomy

Phacoemulsification vs Consecutive Trabeculectomy-Phacoemulsification

- Phacoemulsification +6 months after trabeculectomy
- Better success rate.

Phacoemulsification Alone

- More postoperative complications
- More intraocular inflammation
- More hypotony

Phacoemulsification vs Trabeculectomy

- Phacoemulsification +6 months after trabeculectomy
- Better success rate.

Phacoemulsification vs Consecutive Trabeculectomy-Phacoemulsification

- Phacoemulsification +6 months after trabeculectomy
- Better success rate.
Single, or Combined?

- Minimally Invasive Glaucoma Surgery
 - MIGS
 - Latest technologies
 - Less invasive procedure
 - Less conjunctival scarring
 - Remove bypass site of greatest aqueous outflow resistance
 - Subconjunctival 10K

Minimally Invasive Glaucoma Surgery

- Ideal MIGS
 - Ab internal approach
 - Minimal trauma/destruction of target tissue
 - Rapid post-op recovery
 - Safe
 - Effective long-term IOP reduction
 - Does not prevent/complicate subsequent conventional glaucoma surgery

Conventional Glaucoma Surgery

- Establish a direct communication between the AC and subconjunctival space
- Complications related to:
 - Late leaks, infection, scarring, dysesthesia
 - Pain & tube exposure, migration, infection, corneal decompensation

Novel IOP-lowering Procedures

- Drain aqueous into subconjunctival space
- Enhance uveoscleral outflow
- Improve trabecular resistance
- Safe
- Rapid post-op recovery
- Minimal trauma/destruction of target

Goniosynechialysis

- In angle closure
- Breaking of PAS, opening TM

Microbypass Trabecular iStent

- Heparin coated titanium
- Ab internal implantation
- Bypass trabecular resistance
- Improves TM outflow facility
- Requires visualization of TM

Saheb H et al. J Glaucoma 2014

Teekhasaenee et al. Ophthalmology 1999

Maeda et al. J Glaucoma 2014

Minimally Invasive Glaucoma Surgery

Enhance Conventional Outflow

Enhance Juxtacanalicular TM Outflow

Ideal MIGS

Drain Aqueous into Subconjunctival Space

Decrease Aqueous Production

ECP

Cypass

Trabectome

Hydrus

iStent

GSL

iStent + Phaco

Enhance OUflow

Goniosynechialysis

iStent Results

Microbypass Trabecular iStent

Enhance Conventional Outflow

Enhance Juxtacanalicular TM Outflow

Ideal MIGS

Drain Aqueous into Subconjunctival Space

Decrease Aqueous Production

ECP

Cypass

Trabectome

Hydrus

iStent

GSL

iStent + Phaco

Enhance OUflow

Goniosynechialysis

iStent Results

Microbypass Trabecular iStent

Enhance Conventional Outflow

Enhance Juxtacanalicular TM Outflow

Ideal MIGS

Drain Aqueous into Subconjunctival Space

Decrease Aqueous Production

ECP

Cypass

Trabectome

Hydrus

iStent

GSL

iStent + Phaco

Enhance OUflow

Goniosynechialysis

iStent Results

Microbypass Trabecular iStent

Enhance Conventional Outflow

Enhance Juxtacanalicular TM Outflow

Ideal MIGS

Drain Aqueous into Subconjunctival Space

Decrease Aqueous Production

ECP

Cypass

Trabectome

Hydrus

iStent

GSL

iStent + Phaco

Enhance OUflow

Goniosynechialysis

iStent Results

Microbypass Trabecular iStent

Enhance Conventional Outflow

Enhance Juxtacanalicular TM Outflow

Ideal MIGS

Drain Aqueous into Subconjunctival Space

Decrease Aqueous Production

ECP

Cypass

Trabectome

Hydrus

iStent

GSL

iStent + Phaco

Enhance OUflow

Goniosynechialysis

iStent Results

Microbypass Trabecular iStent

Enhance Conventional Outflow

Enhance Juxtacanalicular TM Outflow

Ideal MIGS

Drain Aqueous into Subconjunctival Space

Decrease Aqueous Production

ECP

Cypass

Trabectome

Hydrus

iStent

GSL

iStent + Phaco

Enhance OUflow

Goniosynechialysis

iStent Results

Microbypass Trabecular iStent

Enhance Conventional Outflow

Enhance Juxtacanalicular TM Outflow

Ideal MIGS

Drain Aqueous into Subconjunctival Space

Decrease Aqueous Production

ECP

Cypass

Trabectome

Hydrus

iStent

GSL

iStent + Phaco

Enhance OUflow

Goniosynechialysis

iStent Results

Microbypass Trabecular iStent

Enhance Conventional Outflow

Enhance Juxtacanalicular TM Outflow

Ideal MIGS

Drain Aqueous into Subconjunctival Space

Decrease Aqueous Production

ECP

Cypass

Trabectome

Hydrus

iStent

GSL

iStent + Phaco

Enhance OUflow

Goniosynechialysis

iStent Results

Microbypass Trabecular iStent

Enhance Conventional Outflow

Enhance Juxtacanalicular TM Outflow

Ideal MIGS

Drain Aqueous into Subconjunctival Space

Decrease Aqueous Production

ECP

Cypass

Trabectome

Hydrus

iStent

GSL

iStent + Phaco

Enhance OUflow

Goniosynechialysis

iStent Results

Microbypass Trabecular iStent

Enhance Conventional Outflow

Enhance Juxtacanalicular TM Outflow

Ideal MIGS

Drain Aqueous into Subconjunctival Space

Decrease Aqueous Production

ECP

Cypass

Trabectome

Hydrus

iStent

GSL

iStent + Phaco

Enhance OUflow

Goniosynechialysis

iStent Results

Microbypass Trabecular iStent

Enhance Conventional Outflow

Enhance Juxtacanalicular TM Outflow

Ideal MIGS

Drain Aqueous into Subconjunctival Space

Decrease Aqueous Production

ECP

Cypass

Trabectome

Hydrus

iStent

GSL

iStent + Phaco

Enhance OUflow

Goniosynechialysis

iStent Results

Microbypass Trabecular iStent

Enhance Conventional Outflow

Enhance Juxtacanalicular TM Outflow

Ideal MIGS

Drain Aqueous into Subconjunctival Space

Decrease Aqueous Production

ECP

Cypass

Trabectome

Hydrus

iStent

GSL

iStent + Phaco

Enhance OUflow

Goniosynechialysis

iStent Results

Microbypass Trabecular iStent

Enhance Conventional Outflow

Enhance Juxtacanalicular TM Outflow

Ideal MIGS

Drain Aqueous into Subconjunctival Space

Decrease Aqueous Production

ECP

Cypass

Trabectome

Hydrus

iStent

GSL

iStent + Phaco

Enhance OUflow

Goniosynechialysis

iStent Results

Microbypass Trabecular iStent

Enhance Conventional Outflow

Enhance Juxtacanalicular TM Outflow

Ideal MIGS

Drain Aqueous into Subconjunctival Space

Decrease Aqueous Production

ECP

Cypass

Trabectome

Hydrus

iStent

GSL

iStent + Phaco

Enhance OUflow

Goniosynechialysis

iStent Results

Microbypass Trabecular iStent

Enhance Conventional Outflow

Enhance Juxtacanalicular TM Outflow

Ideal MIGS

Drain Aqueous into Subconjunctival Space

Decrease Aqueous Production

ECP

Cypass

Trabectome

Hydrus

iStent

GSL

iStent + Phaco

Enhance OUflow

Goniosynechialysis

iStent Results

Microbypass Trabecular iStent

Enhance Conventional Outflow

Enhance Juxtacanalicular TM Outflow

Ideal MIGS

Drain Aqueous into Subconjunctival Space

Decrease Aqueous Production

ECP

Cypass

Trabectome

Hydrus

iStent

GSL

iStent + Phaco

Enhance OUflow

Goniosynechialysis

iStent Results

Microbypass Trabecular iStent

Enhance Conventional Outflow

Enhance Juxtacanalicular TM Outflow

Ideal MIGS

Drain Aqueous into Subconjunctival Space

Decrease Aqueous Production

ECP

Cypass

Trabectome

Hydrus

iStent

GSL

iStent + Phaco

Enhance OUflow

Goniosynechialysis

iStent Results

Microbypass Trabecular iStent

Enhance Conventional Outflow

Enhance Juxtacanalicular TM Outflow

Ideal MIGS

Drain Aqueous into Subconjunctival Space

Decrease Aqueous Production

ECP

Cypass

Trabectome

Hydrus

iStent

GSL

iStent + Phaco

Enhance OUflow
21.1 ± 5.3
2.2 ± 1.4

More iStents = Lower IOP

- Operative
- 2-3 iStents implanted at end of phacofragmentation
- 30 days, 30%, 6 months follow-up
- Post-op IOP < pre-op IOP (p < 0.05)
- Median IOP at 6 months: 15.5 (p < 0.05)
- Glaucoma medications reduced by 5.7 (p < 0.05)
- 5% group needed significantly less medication

Post-op IOP less than pre-op IOP (p < 0.001)
Mean IOP at 1 year 14.3 mmHg

Trabectome

- Device delivers up to 480 µm of Schlemm’s canal
- Cross-dressing for anterior chambers
- Using Trabectome you can perform intracanalicular Schlemm’s canal visualization
- Animal studies
- New technology, safer technology
- No need for efferent valve
- No need for postoperative medications
- No technique

- Phase 1: Early IOP spike in Phaco-trabectome
- Phase 2: Late IOP spike in Phaco-trabectome

Post-op complications
- Only IOP spikes in phase 1
- Not associated with postoperative medications
- Not the result of any postoperative medications

Phaco-trabectome vs Phaco-trabeculectomy

- Prephaco trabeculectomy in 35 trabeculectomy pts
- 6 months follow-up

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Number of Cases</th>
<th>Mean IOP Pre-op</th>
<th>Mean IOP Post-op</th>
<th>Mean IOP Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phaco-trabectome</td>
<td>240</td>
<td>24.5 ± 3.4</td>
<td>13.6 ± 2.3</td>
<td>10.9 ± 1.2</td>
</tr>
<tr>
<td>Phaco-trabeculectomy</td>
<td>246</td>
<td>24.5 ± 3.7</td>
<td>13.6 ± 2.3</td>
<td>10.9 ± 1.2</td>
</tr>
</tbody>
</table>

Phaco-trabeculectomy vs Phaco-trabeculectomy

- Prephaco trabeculectomy in 35 trabeculectomy pts
- 6 months follow-up

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Number of Cases</th>
<th>Mean IOP Pre-op</th>
<th>Mean IOP Post-op</th>
<th>Mean IOP Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phaco-trabectome</td>
<td>240</td>
<td>24.5 ± 3.4</td>
<td>13.6 ± 2.3</td>
<td>10.9 ± 1.2</td>
</tr>
<tr>
<td>Phaco-trabeculectomy</td>
<td>246</td>
<td>24.5 ± 3.7</td>
<td>13.6 ± 2.3</td>
<td>10.9 ± 1.2</td>
</tr>
</tbody>
</table>

Trabectome + Phaco

- Excimer Laser Trabeculotomy (ELT)
- Make a small incision in TM and open up Schlemm’s canal
- Provide a direct pathway for aqueous into collector channel
- Phaco-trabeculectomy anterior chamber incision
- No postoperative medications
- A small pressure of 90° through a transverse approach

Trabectome

- Hydrus Schlemm’s Canal Scaffold
- Intracanalicular scaffold
- Bioded low energy, nonthermal
- Suture lines can be placed into Schlemm’s canal
- Can be molded to shape
- Can be crossed by laser fibers
- Inserted through TM
- Spans 3 clock hours to target multiple collector channels
- Scalloped, open design
- Flexi-vascular: flexible, biocompatible

Intracanalicular scaffold

- Pfeiffer et al. AGS 2012
- Ahuja 3 stent group needed significantly less medication
- MedicaHons reduced from 2.7 to 0.7 (p < 0.001)

Retrospective, single-center (Mayo), case series
Randomised controlled multi-center trial
- iStent + Phaco
- iStent + Phaco
- Hydrus

- More iStents = Lower IOP
- Target IOP achieved in 77% post-op vs 43% pre-op
- IOP reduction 2
- Post-op IOP 15.9 ± 3.5
- Pre-op IOP 0.2 ± 0.7

- 2Jea SY et al. J Glaucoma 2012
- 2Tetz et al. ESCR 2011

- Post-op complication
- Stent malposition
- Decrease 6.7 (27%)
- 12 (44%)
- Compared to 34% with two trabecular micro-bypasses

- Adverse events
- Need for post-op IOP medication lesser in iStent group
- 89 %
- Multicenter trial
- Phaco-trabeculectomy
- Trabectome + Phaco
- Phaco-trabeculectomy vs Phaco-trabectome

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Number of Cases</th>
<th>Mean IOP Pre-op</th>
<th>Mean IOP Post-op</th>
<th>Mean IOP Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phaco-trabectome</td>
<td>240</td>
<td>24.5 ± 3.4</td>
<td>13.6 ± 2.3</td>
<td>10.9 ± 1.2</td>
</tr>
<tr>
<td>Phaco-trabeculectomy</td>
<td>246</td>
<td>24.5 ± 3.7</td>
<td>13.6 ± 2.3</td>
<td>10.9 ± 1.2</td>
</tr>
</tbody>
</table>

Phaco-trabeculectomy vs Phaco-trabectome

- Prephaco trabeculectomy in 35 trabeculectomy pts
- 6 months follow-up

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Number of Cases</th>
<th>Mean IOP Pre-op</th>
<th>Mean IOP Post-op</th>
<th>Mean IOP Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phaco-trabectome</td>
<td>240</td>
<td>24.5 ± 3.4</td>
<td>13.6 ± 2.3</td>
<td>10.9 ± 1.2</td>
</tr>
<tr>
<td>Phaco-trabeculectomy</td>
<td>246</td>
<td>24.5 ± 3.7</td>
<td>13.6 ± 2.3</td>
<td>10.9 ± 1.2</td>
</tr>
</tbody>
</table>

Trabectome

- Hydrus Schlemm’s Canal Scaffold
- Intracanalicular scaffold
- Bioded low energy, nonthermal
- Suture lines can be placed into Schlemm’s canal
- Can be molded to shape
- Can be crossed by laser fibers
- Inserted through TM
- Spans 3 clock hours to target multiple collector channels
- Scalloped, open design
- Flexi-vascular: flexible, biocompatible

Intracanalicular scaffold

- Pfeiffer et al. AGS 2012
- Ahuja 3 stent group needed significantly less medication
- MedicaHons reduced from 2.7 to 0.7 (p < 0.001)
ELT Results

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Pre-op</th>
<th>Post-op</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Pre-op** to **Post-op**: 20% improvement

ELT

- ELT vs. 180° SLT
- No significant difference in complete/qualified success
- Post-op: 18.9 ± 8.1 to 1.4 ± 1.4 (P<.001)

CyPass Suprachoroidal Microstent

- Polyamide material
- Size of a grain of rice
- Drain aqueous into suprachoroidal space

CyPass alone for OAG

- Multicenter clinical trial
- EOS eyes, OAG, 12 months follow-up

CyPass + Phaco

- Multicenter clinical trial
- EOS eyes, OAG, 12 months follow-up

CyPass + Phaco

- Multicenter clinical trial
- EOS eyes, OAG, 12 months follow-up

AqueSys

- Polyamide material
- Size of a grain of rice
- Drain aqueous into suprachoroidal space

AqueSys Data

- None available on PubMed

Cases

- 225 eyes, OAG, 12 months follow-up
- None available on PubMed

Complications

- Pre-op well-controlled IOP (n=41)
- Pre-op uncontrolled IOP (n=57)

Drainage

- Drain aqueous into subconjunctival space

- Tube implanted into pigmented trabecular meshwork with one end in anterior chamber and the other in the subconjunctival space

- Drainage channel diameter 250 microns external diameter with internal lumen

- Size of a grain of rice

IOP Reduction:

- Pre-op mean IOP 21.1 ± 5.9 to Post-op 18.9 ± 8.1 (P<.001)

Macula Edema

- BRVO
- Persistent inflammation
- Transient hyphaema
- Transient early hypotony (13.8%)
- IOP unchanged, meds reduced by 30%
- 37% reduction in IOP, meds reduced by >50%
- No significant difference in complete/qualified success
ECP
• Pulsed, continuous-wave diode laser
• Delivered with fiber optic cable
• Fiber optic cable houses the laser probe and endoscopic camera
• Laser applied to ciliary processes
• Under direct endoscopic visualization

ECP + Phaco

MIGS Results
• MIGS better than phaco alone in reducing IOP
• No RCTs, mostly case series
• IOP reduction inferior to trabeculectomy
• Small number of subjects
• Short duration of follow-up
• Lack of publications

Efficacy
• Adriamycin® Effective Glaucoma Surgery?
• Not suitable for patients with low target IOP

Should We Adopt MIGS?
• Depends on outcome of trials
 – Safety
 – Efficacy
 – Long term results
• Ease of performing surgery
• Cost of procedure, implant & consumables

Phaco Alone in PACG – Potential problems
• Very shallow anterior chamber
• Iridodialysis
• Bulky lens
• Zonular weakness
• Posterior synechiae especially after acute attack

Solutions
• Long corneal tunnel
• Break posterior synechiae before starting capsulorhexis
• Release viscoelastic before hydrodissection
• Increase bottle height during phaco
• Gentle nucleus manipulation
• May require capsular tension ring

Phaco/IOI/Trab/ MMC
• Surgical videos
 • Divert conjunctival flap and scleral flap
 • Place MMC sponges under conjunctival flap
 • Perform phaco
 • Perform sclerostomy and iridectomy
 • Closure of scleral and conjunctival flaps

Surgical Options
Phacemulsification alone or with
1. Filtration surgery– trabeculectomy/MMC
2. Goniosynechiolysis
3. Endoscopic cyclophotocoagulation
4. Minimally invasive Glaucoma surgery (MIGS)
5. Ahmed
6. Neovue
7. iStent
8. Trabectome

Gonioysis
Phaco/IOI/Trab/ MMC

Angle Closure
Phaco/IOI/Tраб/ MMC
Phaco/IOI/Tраб/ MMC

Goniosynechiolysis in PACG

- Surgical video
- Complete phaco/IOL, inflate AC with viscoelastic
- Visualize angle structures with gonio lens
- Insert spunkt into AC to reach iris
- Gently break iris with spatula
- Additional corneal incisions to reach all quadrants

Endoscopic cyclophotocoagulation

- Surgical video
- Complete phaco/IOL, inflate AC with viscoelastic
- Visualize angle structures with gonio lens
- Insert implanting needle into AC
- Enter PTM, aiming to exit sclera 2-3mm behind limbus
- Deploy implant

AqueSys

- Surgical video
- Complete phaco/IOL, inflate AC with viscoelastic
- Visualize angle structures with gonio lens
- Implant inserted into target zone

Hydrus

- Surgical video
- Complete phaco/IOL, inflate AC with viscoelastic
- Visualize angle structures with gonio lens
- Implant inserted into target zone

iStent

- Surgical video
- Complete phaco/IOL, inflates AC with viscoelastic
- Visualize angle structures with gonio lens
- Implant inserted through TM
- May need 2 or more implants spaced apart

Trabectome

- Surgical video
- Complete phaco/IOL, inflate AC with viscoelastic
- Visualize angle structures with gonio lens
- Insert probe into AC
- Advance probe towards ciliary processes till they whiten and shrink, then withdraw
- Pay attention to endoscope view & Microscope view

Complications: When can these occur?

- Intraoperative
- Early postoperative
- Late postoperative

Complications of Glaucoma Surgery: What to expect and how to manage them

Jocelyn CHUA
Consultant
Glaucoma Service
Singapore National Eye Centre
Intraoperative complications

- Corneal dehiscence - Excessive handling of conjunctiva
- Intracameral hemorrhage - Risk on scleral flap
- Scleral tear - Risk on scleral flap
- Suprachoroidal bleed - Immediate wound closure
- Bleb wound leak - Bandage contact lens

Management of intraoperative complications

- Corneal dehiscence - Excessive handling of conjunctiva
- Intracameral hemorrhage - Risk on scleral flap
- Scleral tear - Risk on scleral flap
- Suprachoroidal bleed - Immediate wound closure
- Bleb wound leak - Bandage contact lens

Early postoperative complications

- Hyphema - Avoid incision of iris root during iridectomy
- Retained anh-­‐metabolite sponge - Need to account for number of sponges (medication)
- Hyphema - Avoid damage to iris root during iridectomy
- Underfiltration - Avoid having height flap sutures; iridectomy performed
- Overfiltration - Avoid having loose flap sutures

Management of early postoperative complications

- Hyphema - Avoid damage to iris root during iridectomy
- Retained anh-­‐metabolite sponge - Need to account for number of sponges (medication)
- Hyphema - Avoid incision of iris root during iridectomy
- Underfiltration - Avoid having height flap sutures; iridectomy performed
- Overfiltration - Avoid having loose flap sutures

Late postoperative complications

- Hyphema - Avoid incision of iris root during iridectomy
- Retained anh-­‐metabolite sponge - Need to account for number of sponges (medication)
- Hyphema - Avoid damage to iris root during iridectomy
- Underfiltration - Avoid having height flap sutures; iridectomy performed
- Overfiltration - Avoid having loose flap sutures

Management of late postoperative complications

- Hyphema - Avoid incision of iris root during iridectomy
- Retained anh-­‐metabolite sponge - Need to account for number of sponges (medication)
- Hyphema - Avoid damage to iris root during iridectomy
- Underfiltration - Avoid having height flap sutures; iridectomy performed
- Overfiltration - Avoid having loose flap sutures

Advantages

- Concomitant opening
- Use of lateral scleral flap
- Risk of anterior erosion lower than tubecular flap
- Use of MMC
- Glaucoma surgery

Pre-­‐requisite for success

- Correct identification of angle structures - posterior trabecular meshwork
- Van to see glaucoma well
- Familiarity with instruments, residents
- Patient selection / glaucoma medications
Early postoperative complications
- Underfiltration with raised IOP - Topical glaucoma meds
- Hyphema - Often treated conservatively
- Dislocated implant - May need removal of implant

Late postoperative complications
- Underfiltration with raised IOP - Topical glaucoma meds

I-Stent: Success of IOP control
- 6 weeks - 60% final IOP reduction
- 6-24 months - 50% failure rate with 50% requiring additional surgery. 40% fail at 1 year
- 6-24 months - 85% mean IOP reduction, 90% failure rate

Trabecome: Success of IOP control
- 12 months - 60% final IOP reduction
- 6-24 months - 70% failure rate with 60% requiring additional surgery.
- 6-24 months - 85% mean IOP reduction, 90% failure rate

Intraoperative complications
- Trauma related
 - Scalp / conjunctival laceration
- Endoscopy
 - Laser damage to intraocular structures

Early postoperative complications
- Goniotomy - Cataract surgery performed as well as disease severity

Type and severity of complications depend on the type of glaucoma surgery performed as well as disease severity

Early postoperative complications
- Increased AC inflammation
 - Increase topical steroid doses
- Hyphema
 -虹膜前房出血
- Dislocated implant
 - May need removal of implant

Late postoperative complications
- Scleral / conjunctival burn

IOP:
- 6-24 months - 70% failure rate with 60% requiring additional surgery
- 6-24 months - 85% mean IOP reduction, 90% failure rate

Hyphema
- Hyphema

Posterior vitreous detachment / Retinal detachment
- Retina disease
- Cataract surgery

Arriola
Patel
I
et
al.
Clin

Subjects:
Mild-moderate primary open angle glaucoma
- Aver 3 years – 16% final IOP reduction;
- 42% medical free
- At 15/24 months – 67% medical free; medical use not
- At 1 year – 30% final IOP reduction;
- 75% medical free
- At 6 mths – 66% medical free

Ahuja

Underfiltration with raised IOP - Topical glaucoma
Dislodged implant - May need removal of implant
- Hyphema - Ovner treated conservatively

Minckler
D
et
al.
Trans
Am
Ophthalmol
Soc
2008;106:149-60.

Maeda
M
et
al.
J
Glaucoma

Francis
BA
et
al.
J
Cataract
Refract
Surg
2008;34:1096-103.

Phthisis bulbi / vision loss

Raised IOP - Topical glaucoma meds

Underfiltration with raised IOP - Topical glaucoma
Dislodged implant - May need removal of implant
- Hyphema - Ovner treated conservatively

Minckler
D
et
al.
Trans
Am
Ophthalmol
Soc
2006;104:40-50.

Makrasky

Overfiltration with raised IOP - Topical glaucoma
Dislodged implant - May need removal of implant
- Hyphema - Ovner treated conservatively

Minckler
D
et
al.
Trans
Am
Ophthalmol
Soc
2008;106:149-60.

Maeda
M
et
al.
J
Glaucoma

Francis
BA
et
al.
J
Cataract
Refract
Surg
2008;34:1096-103.

Phthisis bulbi / vision loss