Anterior Segment Testing: An Eye Opener

Amy Jost, BS, COT, CCRC
Cincinnati Eye Institute

Financial Disclosure

- Amy Jost is a consultant to OptiMedica as part of the Medical Staff Advisory Board.
 - Consulting work has no influence on this presentation.
 - Commercial products are mentioned as comparative discussions. The speaker has no financial interest in any of the products mentioned in this presentation.

Objectives:

- To review the various instruments utilized during Anterior Segment Testing.
- Differentiate between various optical biometry devices.
- Discuss Ultrasound Biomicroscopy and its benefits.

Instruments for Anterior Segment Testing at CEI-BA

- Optical Biometers:
 - IOLMaster
 - LenStar
- A-scans:
 - Immersion Ultrasound
 - Contact Ultrasound
- UBM (Ultrasound Biomicroscopy)
- Pachymetry
- ECC/Specular Microscopy
- Slit Lamp Camera
- Portable Slit Lamp
- Pupillometer
- PAM
- RAM

- Keratometers:
 - Manual Keratometer
 - Orbscan
 - Pentacam
 - Trace
 - Atlas Topographer
 - EyeSys Topographer
 - Auto-Keratometer
 - IOLMaster
 - LenStar
 - Hand-Held Keratometer
 - Galilei G4
- Aberrometers:
 - WaveScan
 - Trace
 - Pentacam

Four Key Components Allow the Cataract Surgeon to Achieve The Planned Refractive Goal (for a normal eye)

- Axial length
- Keratometry
- IOL calculation and formulas
- Surgical technique

Normal Ranges

- Axial length = 22-25mm (average 23.5mm)
 - Axial length within 0.3 mm between the two eyes
 - Shorter or longer, run special IOL formula
- K reading = 43 to 45 diopters
 - Flatter or steeper
- ACD = 2.5 to 3.5mm (average 3.24mm)
- Lens Thickness = 3.5 to 5.0mm
- White-to-White = 10.5-12.5mm
 - Important to recheck if Toric IOL
Methods of Biometry

- Optical Biometry
 - IOLMaster
 - LENSTAR
- Ultrasound (A-scan)
 - Immersion
 - Contact

Optical Biometry

- Axial length
- Corneal curvature
- Anterior chamber depth
- White-to-white (WTW)

IOLMaster

Axial length
Corneal curvature
Anterior chamber depth
White-to-white (WTW)
IOLMaster Keratometry

- Keratometry
 - Measuring 6 points of cornea
 - Optical zone 2.5mm
 - One K reading is obtained by averaging 5 K’s

IOLMaster Keratometry

| Corneal Curvature Values | Average | Average | R1: 41.87 D @ 61 | R2: 42.83 D @ 151 | D1: -0.96 D @ 355 | D2: +1.16 D @ 103 | R3: 41.67 D @ 71 | R4: 42.03 D @ 151 | D3: +1.16 D @ 103 | D4: -0.96 D @ 355 | D5: 7.85 mm | D6: 7.85 mm |
|--------------------------|---------|---------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Average | 42.77 D @ 69 | 7.06 mm |
| Average | 42.04 D @ 43 | 7.97 mm |
| Average | 41.61 D @ 133 | 8.20 mm |
| Average | 42.40 D @ 43 | 7.96 mm |
| Average | 41.21 D @ 133 | 8.19 mm |
| Average | 42.45 D @ 40 | 7.95 mm |
| Average | 41.21 D @ 133 | 8.19 mm |
| Average | 42.45 D @ 40 | 7.95 mm |
| Average | 41.21 D @ 133 | 8.19 mm |
| Average | 42.45 D @ 40 | 7.95 mm |

IOLMaster ACD

Align for anterior chamber depth measurement

IOLMaster White-to-White

Available Calculation Formulas

- From IOLMaster version 5.4.4 and older
 - Holladay I
 - SRK/T
 - Haigis
 - Hoffer Q
 - SRK II (outdated)
 - Haigis- L (after corneal refractive surgery)
 - Phakic IOL
 - Prior Refractive Surgery (historical data)
IOLMaster Technical Specs

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial length</td>
<td>14 to 40 mm</td>
</tr>
<tr>
<td>Keratometry</td>
<td>6 to 10 mm</td>
</tr>
<tr>
<td>Anterior chamber depth</td>
<td>1.5 to 6.5 mm</td>
</tr>
<tr>
<td>Corneal diameter</td>
<td></td>
</tr>
<tr>
<td>Lens thickness</td>
<td></td>
</tr>
<tr>
<td>Central pachymetry</td>
<td></td>
</tr>
<tr>
<td>Pupillometry</td>
<td></td>
</tr>
<tr>
<td>Eccentricity of the visual axis</td>
<td></td>
</tr>
</tbody>
</table>

LENSTAR Axial Length

- Axial Length
- Keratometry
- Anterior Chamber Depth
- Corneal Diameter
- Lens Thickness
- Central Pachymetry
- Pupillometry
- Eccentricity of the Visual Axis

LENSTAR Keratometry

- Keratometry
 - Uses two concentric rings with 32 markers for precise measuring
 - Measuring two optical zones
 - 1.65mm and 2.3mm

LENSTAR White-to-White
Available Calculation Formulas

- Holladay I
- SRK/T
- Haigis
- Hoffer Q
- SRK II (outdated)
- Holladay II Integration Ready

LENSTAR Technical Specs

A-Scan Biometry

- Sounds waves are transmitted into the ocular tissues in the form of a sound beam. The sound beam encounters an interface and an echo (reflection) is produced which is transmitted back to the element within the probe.
- A-scan (amplitude scan) probe uses a flat element that produces a non-focused (parallel) sound beam
 - One dimensional echogram
 - 10 MHz frequency

General Reasons for Use

- Dense cataracts
- Poor fixation
- Measurements under anesthesia
- Confirmation of optical biometry

Echo Interpretation
Contact Ultrasound

- Correct Alignment
- Misalignment

Immersion Ultrasound

- Correct Alignment
- Misalignment

Probe Alignment

- Correct Alignment
- Misalignment

Localization of the Macula

- Helpful when using either contact or immersion especially when measuring a patient with a posterior staphyloma
 - Aim probe slightly nasal toward the optic disc for single retina spike
 - Shift probe slightly temporal to locate the macula

Tissue Velocities

- Cornea: 1,641 M/Sec
- Aqueous & Vitreous: 1,532 M/Sec
- Crystalline lens: 1,641 M/Sec
- Soft tissue: 1,550 M/Sec
- Silicone oil: 980 to 1,040 M/Sec
- Pseudophakic lens:
 - PMMA: 2,718 M/Sec
 - Silicone: 980 M/Sec
 - Acrylic: 2,120 M/Sec

Sources of Error in Biometry

- Corneal compression (contact method)
- Incorrect gate placement
- Gain settings either too high or too low
- Misalignment of the sound beam
- Incorrect sound velocity settings
UBMs
- Reichert® Reflex™ UBM
- MD-320W UBM by Meda Co.
- Compact Touch UTS/UBM by Quantel Medical

UBM Set-up
- Special cup to keep the eyelids open
- Filled with BSS
- Transducer positioned in the BSS ~2mm from the eye to avoid injury
- Measurements taken from multiple different angles

UBM
- UBM image of angle, iris, and zonules (arrow)
- UBM image at the limbus: scleral spur (black arrow), iris (downward arrow) and ciliary sulcus (thick left pointing arrow)

UBM
- Composite UBM image of the anterior segment

UBM Image of WTW vs. Sulcus

Visante OCT
- Non-contact device
- Provides imaging of the anterior segment
- Can measure anterior chamber, pachymetry, specific anatomical areas
- Measurements taken from different angles
IOL Vaulted Anteriorly

IOL in stable position

Visante OCT

Visante OCT

Visante Image of K-Pro

Keratometry

Methods of Keratometry

- Manual keratometer
- Optical Biometry: (IOLMaster, LenStar)
- Corneal Topographer
- Autokeratometer
- Hand-held keratometer

Keratometer
Corneal Topography

- Uses a placido disk technology of concentric rings located on the projection head assembly
- Measures the distance between the rings and their relationships with each other
- System can reconstruct the corneal surface with a higher degree of precision and identify micro irregularities

Scheimpflug Imaging

- The *Scheimpflug principle* is a geometric rule that describes the orientation of the plane of focus of an optical system (such as a camera) when the lens plane is not parallel to the image plane.
- Austrian army Captain Theodor Scheimpflug—correct perspective distortion in aerial photographs

Pentacam

- Topographic Maps:
 - Combined device:
 - Slit illumination
 - And a rotating Scheimpflug Camera

- Pachymetry-based IOP correction
- 4 Refractive Maps
- Anterior segment tomography
 - 3D anterior chamber analysis
 - Chamber angle
 - Chamber volume
 - Chamber depth
- Iris camera and HWTW
- Indices Reports: Glaucoma and Refractive screenings

- Scheimpflug Image:
Galilei G4
- Dual Scheimpflug analyzer with integrated Placido disc

- Pachymetry and elevation values
- The new Cone Location and Magnitude Index (CLMI), based on anterior axial curvature
- Ray-tracing for the real posterior surface

Visante Omni
- Anterior OCT
- Placido disk topography

iTrace
- Wavefront Exams-aberromer (refraction assessment)
- Corneal Topographer (map of cornea)

iTrace
- Corneal Topography
IOL Calculations

- Holladay I
 - Average axial length to long axial lengths
 - Uses a surgeon factor
- SRK/T
 - Average axial length to some short axial lengths
 - Uses an A-constant
- Hoffer Q
 - Shorter than normal axial lengths
 - Uses an ACD factor

Modern Formulas for IOL Calculations

- Formulas require the axial length and corneal curvature to predict the effective lens position (ELP)
- Formulas assume that the longer the eye, the deeper the ACD and the shorter the eye, the shallower the ACD
- Clinical cases have shown this is not always accurate

Haigis Formula

- Takes into account 3 constants:
 - a_0 tied to the lens constant, a_1 tied to the measured ACD, a_2 tied to the axial length measurement
- $d = a_0 + (a_1 \times ACD) + (a_2 \times AXL)$
Holladay II

- Axial length
- Corneal curvature
- ACD
- White-to-white
- Lens thickness
- Age
- Refractive error (prior to cataract if available)

Correlation of Errors to Postoperative Outcomes

- An error of 0.3 mm in the axial length measurement yields approximately 1 diopter postoperative refractive error on an average eye length.

- An error of 1 diopter with the keratometry measurement yields approximately 1 diopter post-operative refractive error.

Helpful Links

- www.doctor-hill.com
- www.docholladay.com
 Holladay II Software
- www.ascrs.com
- http://www.augenklinik.uni-wuerzburg.de/ulib/index.htm

Resource List

- Warren Hill, MD
 www.doctor-hill.com
- Sandra Frazier Byrne
 A-Scan Axial Eye Length Measurements, Published 1995
- ASCRS website: www.IOL.CALC.org

Any Questions?

Amy Jost, BS, COT, CCRC
Cincinnati Eye Institute
1945 CEI Drive
Cincinnati, OH 45242
513-569-3678
ajost@cincinnatieye.com