1 Femtosecond Cataract Surgery: Correction of Astigmatism and Complex Cases
 Michael J Taravella, MD
 Director: Cornea and Refractive Surgery
 University of Colorado

2 Financial Disclosures
 • Consultant AMO/VISX
 • Consultant Angiotec/Surgical Specialties
 • No financial interest in material presented

3 Femtosecond Laser Utility in Cataract Surgery
 • Precision Incision
 – Main Incision
 – Paracentesis
 – Capsulotomy
 – Nucleus Disassembly/Chopping
 – Arcuate Incisions for correction of astigmatism

4 Main Incision
 • Triplanar
 – This type of incision cannot be made manually
 • Self-sealing
 – Stronger?

5 Astigmatism Correction
 • Arcuate Incisions in the corneal periphery in the (+) AXIS of astigmatism
 – Term: Peripheral Corneal relaxing incisions
 • PCRI
 – Concept: controlled wound gape

6 Who is a candidate?
 • Generally >.75 D, < 1.50 D of cylinder
 > than 1.25-1.50, consider Toric IOL
 Unless combining astigmatism correction with multifocal IOL
 < .75 consider on axis incision
 2.4 mm incision can correct about .3 diopters

7 Generally in combination with other surgeries
 • Cataract
• Post-lasik enhancement
• PKP?

8 Post-op Target
• < 0.5 Diopters of astigmatism
 – Optical bench testing data on degradation of image for multifocal lens
 • Scott McRae, MD

9 Pre-op testing
• Refraction
• Concept of Coupling
 • Sphere is reduced about ½ of the cylinder
 • Applies to Incisions
• K-readings
• Topography
 • Ideally; should be within 10 degrees of each other
 • Tomography: Posterior Corneal Elevation?
 • Pachymetry
 • Not needed
 • OCT real-time corneal thickness measurement

10 Consent issues
• Pain
• Bleeding (minimal)
• INFECTION
• PERFORATION (RARE)
• LOSS OF VISION
• LASER RELATED CONSENT
 – Under/overcorrection

11 Dry Eye/Keratitis Risk
• Especially against the rule astigmatism
• Corneal innervation at 3 and 9 is interrupted
 – More important as arc length approaches 90 degrees

12 Factors Affecting Astigmatism Correction
• Depth of Cut: must approach 90%
• Length of Cut (Degrees)
• Age: elasticity and biomechanical corneal factors
• Optical Zone: closer to the visual axis, the more effect
 – Too close: can induce irregular astigmatism or glare
– Try to avoid OZ smaller than 7.00 mm

13 Surgical plan
• Base on nomogram
• Nomogram specifies:
 • For a given correction and age of patient, how many degrees should the incision subtend at the given optical zone?
 • Donnenfeld = Starting point
 – Applies to DIAMOND KNIFE INCISIONS at DEPTH of 600 microns and at LIMBUS

14 Nomogram for PKP?
 Nomogram DOES NOT apply to the following:
 – Post lasik LRI
 – Post PKP AK

15 Topography or Surgical Plan
• Bring to OR
• Tape to microscope in surgeon’s orientation
 – If you are sitting at 12, then turn topo upside down so you can visualize proper incision axis placement
 – Operate on + cylinder axis !!
 • Most common error is operating on wrong/incorrect axis

16 Mark
• Mark 180 with overlap of cornea
 – Must be able to see marks after docking
 – Note helpful landmarks in chart
 • Iris nevi, pingeucula, BV, etc.
 – Best way to mark?
 • Sitting up (Cyclotorsion)
 • At slit lamp
 • Landmarks may be helpful

17 Instrumentation
• Solid blade lid speculum
–Keeps lashes out of the way
–Lieberman or wire OK
–Unlike LRI- Do not need Mendez degree marker or fixation device

Docking= Key
• Look for good exposure
 • Lieberman Speculum
 • Same amount of scleral show above and below limbus
• No tilt
 • Avoid chin elevation or tuck
 • Nose straight up and down if possible
• Similar considerations for LASIK/INTRALASE

Avoid:
• Do not adjust X-Y on cornea; try to center patient interface as cornea approached
• Multiple Docks = Chemosis = Poor suction
• Watch for loss of suction or loose conjunctiva

Post Laser: Check the incision
• Length and depth OK?
• Check
 • Look for perforation
 • Avoid placing a Wekcel sponge into the incision if possible (debris)
• If perforation identified
 • AC stable?
 • Microperf versus macro perf?
 • Prophylactic oral antibiotics?
 • Be prepared to suture
 • Always have 10-0 nylon and needle holder, colbri and scissors available as well as BSS to reform AC if necessary

Observations
• Donnenfeld nomogram does not work well for femtosecond arcuate incisions

What have we learned?
• Incisions with the femtosecond laser are not like diamond knife “LRI’s”
 – LRI’s are at different distance from central cornea depending on the corneal diameter
 – Rather consider these incisions as an arcuate keratotomy incision with precise OZ of 9.0 mm PCRI
 • Centered on pupil, not limbus
 – Limbal incisions are a variable distance from the optical center

Nomogram suggestions
• Previous Nomogram: Significant Undercorrection
• Current methods:
 – 100% of Donnenfeld nomogram
 • Incisions are now (LONGER)
 – Optical Zone 8.5 mm
 • CLOSER = more effect
 • Leaves room for 8.0 mm OZ PRK
 – Depth: 87% (DEEPER)
 • Perforations at 90%?

Other considerations
• There is a mismatch between post op keratometric and refractive astigmatism
 – UCVA and refraction are often better than keratometric astigmatism would suggest
 – Unclear exactly why
 – Removal of lens removes lenticular astigmatism?
 – Posterior corneal astigmatism?

Therefore
DO NOT OPEN INCISIONS IMMEDIATELY
• Incisions can be opened to enhance refractive effect
• Wait 1-2 weeks
• Open with Sinsky hook, topical 5% betadine, topical proparacaine in exam room
• Unlike diamond knife incisions; femtosecond laser incision can be adjusted (opened) post-op
26 Case Example

• 67 yr old female

 • Pre-op cyl
 –IOL Master: 1.39 @ 80
 –Topography: 1.03 @ 94

 • Pre-op refraction:
 -1.50 sph (20/30)

27 Case Example

• Femtosecond laser cataract surgery with intraoperative AK

 • 85% DONO, 85% depth, O.Z. 9mm

 • Targeted correction of 1.39 D keratometric astigmatism

 • Arcuates left unopened intraoperatively

28 Case Example

• Post-op week 2:
 -IOL Master: 0.9 D @ 94
 -MRx: pl sph (20/20)

 • HAPPY PATIENT

 • Arcuates left unopened

29 Case Example

• 72 year old male with NSC
• -0.75 +1.25 X 040 20/40
 –K readings: 43.75@65/42.75
• LENSX Correction of astigmatism
 –2 arcuate cuts
Post op Case Example 1
• 1 month out
 – Plano +0.25 X 040
 – K readings 43.25 @ 41/ 43.00
 – Incisions left unopen

Case Example 2
• -18.00 + 3.00 X 098
 – K readings: 48.25 @ 062/ 46.25
 – Target: -1.50
• Underwent LENSX with arcuate incisions
 – Goal: Correct 2 D at about 90 degrees
 – Incisions fully opened

Post op Refraction
• +0.75 + 0.25 X 021 = 20/25

Case Example 3
• -1.00 + 1.50 x 135
• K readings: 44.50 @ 116/43.50
 – Underwent Cataract surgery with LENSX

Post Op Example 3
• Incisions initially unopened
 – Paired 30 degree arcs
• Post op refraction at 1 week
 – -1.00 + 0.75 X 152
 – Incisions opened at slit lamp
 • At 2 months: -1.00 + 1.50 X 145
 • -1.00 + 1.00 X 150 (Autorefract)
 • 43.64 @ 110/43.02

POST PKP ASTIGMATISM
• Case report:
 • 14 diopters of cylinder topography
• LENSX AK
 – Paired 70 degree arc
 – 85% depth
 – 6.75 mm OZ

Conclusions
• The femtosecond laser is capable of making extremely
Femtosecond laser is capable of making extremely precise incisions in terms of shape and depth.
- These incisions are fundamentally different than diamond knife incisions.
- Femtosecond incisions create a potential space that can be opened post-op.

Femtosecond LASER ASSIST: PXE and Loose Zonules
Michael J Taravella, MD
Director: Cornea and Refractive Surgery
University of Colorado

The author has no financial interest in the material presented.

Clinical History
- 70 year old male with history of pseudoexfoliation
- Obvious phacodenisis on slit lamp exam
- Plan: Femtosecond laser incisions, capsulotomy, and nucleus division followed by phacoemulsification

Factors predisposing to zonular weakness
- Systemic problems
 - Marfan's syndrome
 - Pseudoexfoliation syndrome
- Trauma

Strategies to Address Zonular dehiscence
- Low stress capsulotomy
 - Minimize tangential and centripetal forces if possible
- Low flow phacoemulsification
 - Try to decrease turbulence
- Minimize force used to crack/divide nucleus
- Judicious use of CTR/support rings

Surgical Pearls
- Femtosecond laser allows for capsulotomy and nuclear quadrant division to be performed with minimal zonular stress.
• Iris hooks are used to support the capsule throughout the procedure
• Placement of CTR stabilizes bag and may prevent late dislocation
• Lens support relies on sulcus haptic position and optic capture

42 Conclusions
• The femtosecond laser may have utility in complex cataract cases

43 Contact Information
• Michael.Taravella@ucdenver.edu